3.734 \(\int \frac{x \sqrt{c+d x^2}}{(a+b x^2)^2} \, dx\)

Optimal. Leaf size=80 \[ -\frac{d \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^2}}{\sqrt{b c-a d}}\right )}{2 b^{3/2} \sqrt{b c-a d}}-\frac{\sqrt{c+d x^2}}{2 b \left (a+b x^2\right )} \]

[Out]

-Sqrt[c + d*x^2]/(2*b*(a + b*x^2)) - (d*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^2])/Sqrt[b*c - a*d]])/(2*b^(3/2)*Sqrt[b*
c - a*d])

________________________________________________________________________________________

Rubi [A]  time = 0.0620141, antiderivative size = 80, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {444, 47, 63, 208} \[ -\frac{d \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^2}}{\sqrt{b c-a d}}\right )}{2 b^{3/2} \sqrt{b c-a d}}-\frac{\sqrt{c+d x^2}}{2 b \left (a+b x^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[(x*Sqrt[c + d*x^2])/(a + b*x^2)^2,x]

[Out]

-Sqrt[c + d*x^2]/(2*b*(a + b*x^2)) - (d*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^2])/Sqrt[b*c - a*d]])/(2*b^(3/2)*Sqrt[b*
c - a*d])

Rule 444

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{x \sqrt{c+d x^2}}{\left (a+b x^2\right )^2} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{\sqrt{c+d x}}{(a+b x)^2} \, dx,x,x^2\right )\\ &=-\frac{\sqrt{c+d x^2}}{2 b \left (a+b x^2\right )}+\frac{d \operatorname{Subst}\left (\int \frac{1}{(a+b x) \sqrt{c+d x}} \, dx,x,x^2\right )}{4 b}\\ &=-\frac{\sqrt{c+d x^2}}{2 b \left (a+b x^2\right )}+\frac{\operatorname{Subst}\left (\int \frac{1}{a-\frac{b c}{d}+\frac{b x^2}{d}} \, dx,x,\sqrt{c+d x^2}\right )}{2 b}\\ &=-\frac{\sqrt{c+d x^2}}{2 b \left (a+b x^2\right )}-\frac{d \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^2}}{\sqrt{b c-a d}}\right )}{2 b^{3/2} \sqrt{b c-a d}}\\ \end{align*}

Mathematica [A]  time = 0.0817497, size = 80, normalized size = 1. \[ \frac{d \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^2}}{\sqrt{a d-b c}}\right )}{2 b^{3/2} \sqrt{a d-b c}}-\frac{\sqrt{c+d x^2}}{2 b \left (a+b x^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(x*Sqrt[c + d*x^2])/(a + b*x^2)^2,x]

[Out]

-Sqrt[c + d*x^2]/(2*b*(a + b*x^2)) + (d*ArcTan[(Sqrt[b]*Sqrt[c + d*x^2])/Sqrt[-(b*c) + a*d]])/(2*b^(3/2)*Sqrt[
-(b*c) + a*d])

________________________________________________________________________________________

Maple [B]  time = 0.01, size = 1617, normalized size = 20.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(d*x^2+c)^(1/2)/(b*x^2+a)^2,x)

[Out]

-1/4*(-a*b)^(1/2)/a/b/(a*d-b*c)/(x-1/b*(-a*b)^(1/2))*((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b
)^(1/2))-(a*d-b*c)/b)^(3/2)-1/4/b*d/(a*d-b*c)*((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2)
)-(a*d-b*c)/b)^(1/2)-1/4*(-a*b)^(1/2)/b^2*d^(3/2)/(a*d-b*c)*ln((d*(-a*b)^(1/2)/b+(x-1/b*(-a*b)^(1/2))*d)/d^(1/
2)+((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))-1/4*a/b^2*d^2/(a*d-b*
c)/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x-
1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x-1/b*(-a*b)^(1/2)))+1/4/b*
d/(a*d-b*c)/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(
1/2)*((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x-1/b*(-a*b)^(1/2)
))*c+1/4*(-a*b)^(1/2)/a/b*d/(a*d-b*c)*((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b
*c)/b)^(1/2)*x+1/4*(-a*b)^(1/2)/a/b*d^(1/2)/(a*d-b*c)*ln((d*(-a*b)^(1/2)/b+(x-1/b*(-a*b)^(1/2))*d)/d^(1/2)+((x
-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))*c+1/4*(-a*b)^(1/2)/a/b/(a*d
-b*c)/(x+1/b*(-a*b)^(1/2))*((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(3/2
)-1/4/b*d/(a*d-b*c)*((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2)+1/4*(
-a*b)^(1/2)/b^2*d^(3/2)/(a*d-b*c)*ln((-d*(-a*b)^(1/2)/b+(x+1/b*(-a*b)^(1/2))*d)/d^(1/2)+((x+1/b*(-a*b)^(1/2))^
2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))-1/4*a/b^2*d^2/(a*d-b*c)/(-(a*d-b*c)/b)^(1/2)*l
n((-2*(a*d-b*c)/b-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x+1/b*(-a*b)^(1/2))^2*d-2*d
*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x+1/b*(-a*b)^(1/2)))+1/4/b*d/(a*d-b*c)/(-(a*d-b*c)/b
)^(1/2)*ln((-2*(a*d-b*c)/b-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x+1/b*(-a*b)^(1/2)
)^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x+1/b*(-a*b)^(1/2)))*c-1/4*(-a*b)^(1/2)/a/b
*d/(a*d-b*c)*((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2)*x-1/4*(-a*b)
^(1/2)/a/b*d^(1/2)/(a*d-b*c)*ln((-d*(-a*b)^(1/2)/b+(x+1/b*(-a*b)^(1/2))*d)/d^(1/2)+((x+1/b*(-a*b)^(1/2))^2*d-2
*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))*c

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(d*x^2+c)^(1/2)/(b*x^2+a)^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 1.62071, size = 747, normalized size = 9.34 \begin{align*} \left [\frac{{\left (b d x^{2} + a d\right )} \sqrt{b^{2} c - a b d} \log \left (\frac{b^{2} d^{2} x^{4} + 8 \, b^{2} c^{2} - 8 \, a b c d + a^{2} d^{2} + 2 \,{\left (4 \, b^{2} c d - 3 \, a b d^{2}\right )} x^{2} - 4 \,{\left (b d x^{2} + 2 \, b c - a d\right )} \sqrt{b^{2} c - a b d} \sqrt{d x^{2} + c}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right ) - 4 \,{\left (b^{2} c - a b d\right )} \sqrt{d x^{2} + c}}{8 \,{\left (a b^{3} c - a^{2} b^{2} d +{\left (b^{4} c - a b^{3} d\right )} x^{2}\right )}}, -\frac{{\left (b d x^{2} + a d\right )} \sqrt{-b^{2} c + a b d} \arctan \left (-\frac{{\left (b d x^{2} + 2 \, b c - a d\right )} \sqrt{-b^{2} c + a b d} \sqrt{d x^{2} + c}}{2 \,{\left (b^{2} c^{2} - a b c d +{\left (b^{2} c d - a b d^{2}\right )} x^{2}\right )}}\right ) + 2 \,{\left (b^{2} c - a b d\right )} \sqrt{d x^{2} + c}}{4 \,{\left (a b^{3} c - a^{2} b^{2} d +{\left (b^{4} c - a b^{3} d\right )} x^{2}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(d*x^2+c)^(1/2)/(b*x^2+a)^2,x, algorithm="fricas")

[Out]

[1/8*((b*d*x^2 + a*d)*sqrt(b^2*c - a*b*d)*log((b^2*d^2*x^4 + 8*b^2*c^2 - 8*a*b*c*d + a^2*d^2 + 2*(4*b^2*c*d -
3*a*b*d^2)*x^2 - 4*(b*d*x^2 + 2*b*c - a*d)*sqrt(b^2*c - a*b*d)*sqrt(d*x^2 + c))/(b^2*x^4 + 2*a*b*x^2 + a^2)) -
 4*(b^2*c - a*b*d)*sqrt(d*x^2 + c))/(a*b^3*c - a^2*b^2*d + (b^4*c - a*b^3*d)*x^2), -1/4*((b*d*x^2 + a*d)*sqrt(
-b^2*c + a*b*d)*arctan(-1/2*(b*d*x^2 + 2*b*c - a*d)*sqrt(-b^2*c + a*b*d)*sqrt(d*x^2 + c)/(b^2*c^2 - a*b*c*d +
(b^2*c*d - a*b*d^2)*x^2)) + 2*(b^2*c - a*b*d)*sqrt(d*x^2 + c))/(a*b^3*c - a^2*b^2*d + (b^4*c - a*b^3*d)*x^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x \sqrt{c + d x^{2}}}{\left (a + b x^{2}\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(d*x**2+c)**(1/2)/(b*x**2+a)**2,x)

[Out]

Integral(x*sqrt(c + d*x**2)/(a + b*x**2)**2, x)

________________________________________________________________________________________

Giac [A]  time = 1.16134, size = 107, normalized size = 1.34 \begin{align*} \frac{1}{2} \, d{\left (\frac{\arctan \left (\frac{\sqrt{d x^{2} + c} b}{\sqrt{-b^{2} c + a b d}}\right )}{\sqrt{-b^{2} c + a b d} b} - \frac{\sqrt{d x^{2} + c}}{{\left ({\left (d x^{2} + c\right )} b - b c + a d\right )} b}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(d*x^2+c)^(1/2)/(b*x^2+a)^2,x, algorithm="giac")

[Out]

1/2*d*(arctan(sqrt(d*x^2 + c)*b/sqrt(-b^2*c + a*b*d))/(sqrt(-b^2*c + a*b*d)*b) - sqrt(d*x^2 + c)/(((d*x^2 + c)
*b - b*c + a*d)*b))